
http://www.ideaconsulting.com

A New Paradigm for Synchronous State Machine Design in Verilog

Randy Nuss

Copyright 1999 Idea Consulting

Introduction
Synchronous State Machines are one of the most common building blocks in modern digital systems. They
handle everything from communications handshaking protocols to microprocessor bus wait state insertion.
State machines operate at hardware speeds where software cannot compete. All too often engineers take an
ad-hoc approach to state machine design. Subtle and frustrating problems can arise from poorly designed
state machines which typically manifest themselves as intermittent operation or lockup. Other problems
such as glitches may appear in the outputs causing headaches for customers and service personnel long after
a product is in production.

This article will first describe the basic architectures for synchronous state machines, then describe a method
of State Machine implementation which leads to glitchless, minimum-delay operation. The Verilog Hard-
ware Description Language will be utilized.

State Machine Architectures
There are two generally accepted architectures for Synchronous State Machines. The first type considered is
a state machine in which the outputs depend only on the current state. This is commonly known as a Moore
machine. In the second type, the outputs depend on both the current state and the input variables. This is
known as a Mealy Machine.

Figure 1: Moore State Machine

Output
Combinatorial

Logic

State
F/Fs

Combinatorial
Logic

Input

Output

Current State

CLK

http://www.ideaconsulting.com

Moore Machine
This is the simplest of the two state machine types. The outputs are combinatorial signals based solely on the
current state. Unfortunately, this can lead to glitches on the output signals which can cause erratic operation
of circuitry driven by the state machine.

The glitches are due to unequal delays in the Clock to Q path of the flip-flops which make up the state bits as
well as unequal propagation delays in the combinatorial logic which derives the output from the state bits.
Moore machine implementations are generally simpler than Mealy machines and may allow somewhat
higher clock rates than a Mealy machine.

Mealy Machine
In a Mealy machine, the outputs are a function of not only the current state, but also the inputs. This imple-
mentation can lead to timing problems since the output timing is not simply a function of the clock, but of
the input timing as well. For this reason, the Mealy architecture is generally a poor choice for synchronous
devices or designs.

Figure 2: Mealy State Machine

State
F/Fs

Combinatorial
Logic

Input

Current State

CLK

Output

http://www.ideaconsulting.com

State Diagram
A state diagram allows the designer to describe the desired state machine operation graphically. This helps
him or her visualize the operation of the state machine prior to implementation. The diagram contains a
wealth of information.

First, the diagram shows state transitions. The circles and arrows describe how the state machine moves
from one state to another. The circles represent a particular value of the state variable. The arrowed lines
describe how the state machine transitions from one state to the next state. The arrowed lines contain a bool-
ean expression which shows the criteria for a transition from one state to another. If the boolean expression
is TRUE and the current state is the state at the source of the arrowed line, the state machine will transition
to the destination state on the next clock.

The diagram also shows the values of the output variables during each state. In a Moore Machine, the out-
puts are only a function of the current state; inputs have no effect after the clock. This makes the Moore
Machine an ideal candidate for a fully synchronous design. Outputs of a Moore Machine have reasonably
predictable timing and are always referenced to the clock. On the other hand, Mealy Machine outputs can be
dependent on the value of inputs to the state machine which may be transitioning at less predictable times. It
is for this reason, that Moore Machines generally provide for a smoother implementation in FPGA and Gate
Array designs.

In a Moore Machine, the outputs can be represented just to the right of the circle which represents the state

Figure 3: Example State Diagram (Moore Machine)

S0
0000

S3
1010

S1
0110

S4
0110

S1A
1110

S2
0101

in2 & !in1

else

in2

else

else

in1

in1

OUT1
OUT2

OUT0
OUT2

OUT1
OUT3

OUT1
OUT2

OUT1
OUT2
OUT3

http://www.ideaconsulting.com

as well as inside the circle. A useful system is to include just the outputs which are to be asserted during that
cycle to the right of the circle. This highlights the fact that a particular signal is active during that state and
nowhere else. For signals which do not have an asserted and deasserted state, the signals value can be shown
for each cycle. An example of this might be a signal like “RDWR”. If the signal is logic 1, a read of some
sort is implied while a logic 0 indicates a write is active.

Whenever possible, choose 0 to be the deasserted state and 1 to be the asserted state for State Machine inputs
and outputs. Most FPGA and ASIC primitive libraries allow an I/O buffer to invert or not with no degrada-
tion in propagation delay. The signals may be inverted to the outside world, but inside the device, try to
make all signals active high. Its less confusing, and when the complexity of the design ratchets up, you will
be glad to have fewer mental inversions to make.

Input Variables
ALL Input variables MUST be synchronous to the state machine clock. If they are not, strange things will
begin to happen to the state machine in actual operation. Illegal states will be mysteriously entered. Total
state machine lockup can result. Inevitably, the design will fail intermittently in the field. Why?

The reason lies in the fact that a physical state machine implementation uses physical gates which have a
non-zero propagation delay. An input signal progagating through gates to the D input of one state flip flop
will be slightly faster or slower than that same input signal travelling through a different set of gates to
another flip flop’s D input. If the input signal changes at just the wrong time, the fast path will see the
change, but the slow one won’t. The clock comes along and one of the flip-flops will now have an incorrect
logic level. The overall state machine just made an illegal state transition; the circuit has failed. This type of
design error generally goes unnoticed because the faulty behavior shows up only a small percentage of the
time. Bewareof the asynchronous input!

The cure for the asynchronous input is a synchronizer. Generally a 2 stage synchronizer is adequate to pre-
vent illegal state entry. It should be noted that there is a statistical probability, albeit very low, that an asyn-
chronous input may still be able to propagate through a synchronizer. For each stage of synchronization
employed, the probability is reduced considerably. Some space/military designs require the use of a 3 stage
synchronizer, but 2 stages is generally considered the standard for commercial and industrial grade designs.
To minimize latency, use the falling edge of the clock for the first stage and the rising edge as the second
stage.

Output Variables

Remember that in a Moore state machine, the value of output variables are solely a function of the current
state. One of the valuable things about a Moore design is that the timing of the state transitions/outputs is
dependent only upon the clock. But, we start to lose that timing simplicity when combinatorial logic is used
to generate outputs which are functions of the state bits. Depending on the complexity of this “back-end”
logic, the actual timing of the outputs can be seriously degraded.

Another problem with this popular approach is that narrow glitches can appear on these combinatorial out-
puts during state transitions. Due to clock skew, unequal clock to Q prop delay and unequal combinatorial
logic prop delay, glitches will invariably occur. These glitches may be very narrow, and may not be visible at
all on most logic analyzers and some scopes. You can be assured that sensitive edge based circuits which are
driven by these outputs will see them and again circuit failure can result.

http://www.ideaconsulting.com

Worse still, glitch width and severity will change with temperature and power supply variations.

A Better Way

Registered Outputs
A way to avoid both of the previous problems is to define the state machine such that the outputs ARE the
state bits. Each output has predictable timing and minimal propagation delay. There are no glitches, because
a single flip-flop changes at most once per clock assuming setup and hold timing on the input is observed. If
an output is to be a logic 1 for two consecutive states, it is guaranteed that there will be no low going glitch
if the inputs are properly synchronized as described above.

State Selection
It is certainly possible, even likely, that the state machine requires that the output variables be at a unique
logical level pattern in two different machine states. This presents a minor problem to the scheme described
above in that we have decided to make the machine state equal to the state of the outputs.

To solve this problem, we must add 1 or more additional state bits which serve no purpose other than to dif-
ferentiate two or more unique machine states which have the same output variable values. For instance, sup-
pose that we are designing a state machine as shown in the diagram below:

Notice in the State Diagram example, that State S1 and State S4 require that the 4 outputs be at logic level
0110. To differentiate the two states, we add another state bit so that state S1 is now 00110 and S4 is now
10110. The added state bit is not wired to anything outside the state machine, but it allows each state to have

Figure 4: Modified Moore Machine

State
F/Fs

Input

Output

Current State

CLK

Combinatorial
Logic

http://www.ideaconsulting.com

a unique output pattern.

Verilog Implementation

Output Variable Definition Section
In this section, we will use the verilog ‘define statement to associate a state value to each state name.We

simply transform the data directly from the State Diagram. The State Name and the state value are inside the
circle that defines each state. Note the additional bit added to differentiate S1 and S4.

//
// Define Output states in terms of input variables
// +---------- OUT3
// |+--------- OUT2
// ||+-------- OUT1
// extra bit ---+ |||+------- OUT0
// | ||||
// V VVVV
‘define S0 5’b0_0000 // Idle state, all bits set to 0
‘define S1 5’b0_0110 // extra bit == 0 here
‘define S1A 5’b0_1110
‘define S2 5’b0_0101
‘define S3 5’b0_1010
‘define S4 5’b1_0110 // extra bit == 1 here

Output Assignment Section
In this section, we will first declare the state register. In this case it will be a 5 bit reg. Then we will use a
continuous assignment to assign an output to its associated state bit. This continuous assignment will synthe-
size to a zero delay wire i.e. the output name and the register bit are synonyms. If there are asynchronous
inputs to the state machine, this is a good place to instantiate synchronizers.

// Declare state flip flops
reg [4:0] state;

// Continuous assignment of state bits to outputs
assign {OUT3, OUT2, OUT1, OUT0} = state[3:0];

// Synchronize asynchronous inputs if needed

State Transition Section
In this section, we use the State Diagram as a guide to explicitly define how the state machine transitions
from one state to another. We also provide a means of initializing the state machine with a synchronous
reset. The state machine will enter state S0 upon reset. Note that as reset is just another input to the state
machine, care should be taken to ensure that it is synchronous as well.

http://www.ideaconsulting.com

//
// Define State Transitions
//
always @(posedge clk)
 if (reset)
 state = ‘S0;
 else
 case (state)
 ‘S0: if (in1 && !in2)
 state = ‘S1;
 else if (in2)
 state = ‘S1A;
 else
 state = ‘S0;
 ‘S1: if (in1)
 state = ‘S4;
 else
 state = ‘S2;
 ‘S1A:
 state = ‘S0;
 ‘S2: if (in2)
 state = ‘S3;
 else
 state = ‘S2;
 ‘S3:
 state = ‘S4;
 ‘S4:
 state = ‘S0;
 default:
 state = ‘S0;
 endcase

Summary
This paper first discussed some of the pitfalls which hardware designers can fall prey to in the design of syn-
chronous state machines. Then a method avoiding these problems was discussed which has particular use-
fulness in FPGA and Gate Array implementations. Finally a complete example was presented in Verilog
HDL to illustrate the simplicity of the problem solution.

